Global Convergence of a Grassmannian Gradient Descent Algorithm for Subspace Estimation
نویسندگان
چکیده
It has been observed in a variety of contexts that gradient descent methods have great success in solving low-rank matrix factorization problems, despite the relevant problem formulation being non-convex. We tackle a particular instance of this scenario, where we seek the d-dimensional subspace spanned by a streaming data matrix. We apply the natural first order incremental gradient descent method, constraining the gradient method to the Grassmannian. In this paper, we propose an adaptive step size scheme that is greedy for the noiseless case, that maximizes the improvement of our metric of convergence at each data index t, and yields an expected improvement for the noisy case. We show that, with noise-free data, this method converges from any random initialization to the global minimum of the problem. For noisy data, we provide the expected convergence rate of the proposed algorithm per iteration.
منابع مشابه
Convergence of a Grassmannian Gradient Descent Algorithm for Subspace Estimation From Undersampled Data
Subspace learning and matrix factorization problems have a great many applications in science and engineering, and efficient algorithms are critical as dataset sizes continue to grow. Many relevant problem formulations are non-convex, and in a variety of contexts it has been observed that solving the non-convex problem directly is not only efficient but reliably accurate. We discuss convergence...
متن کاملAdaptive Stochastic Gradient Descent on the Grassmannian for Robust Low-Rank Subspace Recovery
In this paper, we present GASG21 (Grassmannian Adaptive Stochastic Gradient for L2,1 norm minimization), an adaptive stochastic gradient algorithm to robustly recover the low-rank subspace from a large matrix. In the presence of column outliers corruption, we reformulate the classical matrix L2,1 norm minimization problem as its stochastic programming counterpart. For each observed data vector,...
متن کاملA new hybrid conjugate gradient algorithm for unconstrained optimization
In this paper, a new hybrid conjugate gradient algorithm is proposed for solving unconstrained optimization problems. This new method can generate sufficient descent directions unrelated to any line search. Moreover, the global convergence of the proposed method is proved under the Wolfe line search. Numerical experiments are also presented to show the efficiency of the proposed algorithm, espe...
متن کاملA new Levenberg-Marquardt approach based on Conjugate gradient structure for solving absolute value equations
In this paper, we present a new approach for solving absolute value equation (AVE) whichuse Levenberg-Marquardt method with conjugate subgradient structure. In conjugate subgradientmethods the new direction obtain by combining steepest descent direction and the previous di-rection which may not lead to good numerical results. Therefore, we replace the steepest descentdir...
متن کاملEnhanced Online Subspace Estimation via Adaptive Sensing
This work investigates the problem of adaptive measurement design for online subspace estimation from compressive linear measurements. We study the previously proposed Grassmannian rank-one online subspace estimation (GROUSE) algorithm with adaptively designed compressive measurements. We propose an adaptive measurement scheme that biases the measurement vectors towards the current subspace est...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016